International Journal of Pharmaceutical Science and Research

ISSN: 2455-4685

Impact Factor: RJIF 5.28 www.pharmacyjournal.net

Volume 3; Issue 1; January 2018; Page No. 09-11

GC-MS analysis and Antibacterial activity of Nardostachys jatamansi (D.Don) DC

*1 Ram Lal Shrestha, ² Shree Dhar Gautam, ³ Shrimita Shrestha, ⁴ Binita Maharjan

- ^{1, 2} Department of Chemistry, Amrit Campus, Tribhuvan University, Lainchour, Kathmandu, Nepal
 - ³ Department of Biotechnology, National College, Nayabazaar, Kathmandu, Nepal
 - ⁴ Department of Chemistry, Kathmandu Valley College, Chhauni, Kathmandu, Nepal

Abstract

The rhizome of *Nardostachys jatamansi* (D.Don) DC. was subjected to extraction of essential oil by hydro distillation in Clevenger apparatus. The composition of essential oil so collected were determined by GC-MS system and showed the presence of 10 different compounds. The most abundant were Ledol (23.82%), Sativen (20.00%), β -Gurjunene (13.82%) and Valencene (7.75%). Antibacterial activity of the essential oil of *N. jatamansi* was studied. Oil exhibited moderate antibacterial activity.

Keywords: Nardostachys jatamansi (D.Don) DC., essential oil, GC-MS, activity

Introduction

Nardostachys jatamansi (D.Don) DC. belongs to the family Valerianaceae. It is commonly known as musk root and called as Jatamansi in Nepali. It is distributed to the northern part of alpine to sub alpine Himalayan region at an altitude of 3000-5000 m ^[1, 2]. It is an erect perennial herb, 10-75cm tall with dark fibers. Leaves are cauline, sessile or sub-sessile. Flowers are terminal cymes ^[3].

The chemical composition of N. jatamansi is highly complex containing volatile oil and other biological active compounds. Phytochemical constituents of N. jatamansi includes phenolic compounds, caffeoylquinic acid derivatives, β -sitosterol, lignans, neolignans, monoterpenoids, sesquiterpenoids, diterpenoids, iridoids, β -maaliene, calarene and nardostachnol [3,4,5].

N. jatamansi helps to promote physical and mental health augment resistance of the body against disease and show antioxidant, tranquillizing, hypotensive, hypolipidemic, antischemic, anti-arrhythmic, hepatoprotective, anti-convulsant, neuroprotective activities, hypolipidemic and fungicidal activity [6, 7]. It is also used for the treatment of epilepsy, hysteria, convulsive affections, stomache, constipation and cholera in Ayurvedic and Unani systems of Medicine and as a stimulant, antiseptic, and insect repellent [5]. It has protective effect in Parkinsonism, epilepsy and cerebral ischemia. Jatamansi is capable of lowering norepinephrine as well as serotonin in brain [8].

Experimental

Collection of Plant Materials

The rhizome of plant was collected from Rasuwa, Nepal. The plants were identified by Department of Botany, Amrit Campus, Lainchour, Kathmandu, Nepal.

Extraction of Essential Oil

The mature rhizome of *N. jatamansi* were crushed for hydro distillation and subjected to a Clevenger apparatus for three

hours. By this process about 2ml of light bluish green coloured essential oils were collected and stored in a sealed glass vials at low temperature (0-4°C) prior to analysis.

GC-MS Analysis

The essential oils sample of *N. jatamansi* was subjected to GC-MS analysis. GC-MS analysis was performed on a gas chromatography mass spectrometer GCMS-QP2010 under the following condition: injection volume 1µL with split ratio 1:50; Helium as a carrier gas with a Rtx-5MS column of dimension 30m×0.25mm×0.25µm, temperature programmed at 40, 200 and 280°C with a hold time of 2.0, 3.0 and 4.0 min identification was accompanied by comparison of MS with those reported in NIST 05 and FFNSCI.3 libraries. It was performed in Department of Food Technology and Quality Control, Nepal Government, Babarmahal, Kathmandu, Nepal.

Antibacterial activity assays

Antimicrobial assay of essential oil of plants was performed by agar well diffusion method in Muller Hilton Agar (MHA) and the minimum bactericidal concentration of those extract was determined by micro dilution method. All the strains of bacteria was cultured in Nutrient broth (NB) and incubated at 37 0 C for 18 hours. After incubation each stain were diluted with sterile distilled water. The turbidity of dilution was compared with 0.5 McFarland standards (approximately 10^{8} CFU/ml). The suspensions were then diluted (1:100) in Muller Hilton Broth (MHB) to obtain 10^{6} CFU/ml. Prepared inoculums were incubated for 30 minutes at 37 0 C prior to

Plant oils (30 μ l) were loaded into the respective wells with the help of micropipette. The solvent (50% DMSO) was tested for its activity as a control at the same time in the separate well. The Neomycin 20 μ g/ml was used as a positive control. The plates were then left for half an hour with the lid closed so that extracts diffused to the media. The plates were incubated overnight at 37 °C. After proper incubation (18-24 hours) the

plates were observed for the zone of inhibition around well which is suggested by clean zone without growth. The ZOI were measured with the help of the ruler and mean was recorded for the estimation of potency of antibacterial substance.

Determination of Minimum Bactericidal Concentration

The Minimum Bactericidal Concentration (MBC) was determined by micro dilution method. The methanol extracts were diluted by two fold to get series of concentrations from 0.048 to 25 mg/ml in freshly prepared sterile nutrient broth. $20\mu l$ of the microorganism suspension (correspond to 10^6 CFU/ml) was added to each of the sample dilutions. These were incubated for 18 hours at $37^{\circ}C$ and each tube content was subculture in fresh nutrient agar separately and minimum bactericidal concentration was determined that showed no growth at all.

Determination of the Minimum Inhibitory Concentration

The smallest amount of compounds required to kill or inhibit the growth of micro-organism *in vitro* can be determined by the dilution method. This amount is referred as minimum inhibitory concentration (MIC). It is a measure of potency which is expressed in terms of either μg or mg/ml. A stock solution of 25 mg/ml was prepared. This was serially diluted to obtain various ranges of concentrations between 25 mg/ml to 0.048 mg/ml.

Result and Discussion GC-MS Analysis

GC-MS analysis of essential oils of fruits of *N. jatamansi* shows the presence of 10 different compounds. The chemical compound identified in essential oils of the fruits of the *N. jatamansi* plant are presented below:

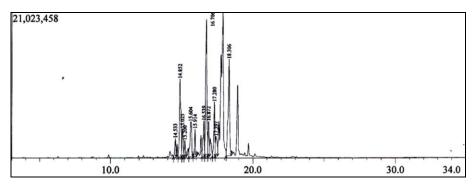


Fig 1: Chromatogram of essential oils of N. jatamansi

The major constituents present in the essential oils sample were Ledol (23.82%), Sativen (20.00%), β -Gurjunene

(13.82%) and Valencene (7.75%). Constituents of essential oils of *N. jatamansi* are tabulated as follows.

S.N.	Name of the compounds	Molecular Formula	Molecular Weight	Retention Time	Area %	Height %
1.	α-Gurjunene	C ₁₅ H ₂₄	204	14.533	2.48	3.23
2.	β -Gurjunene	C ₁₅ H ₂₄	204	14.852	13.82	13.40
3.	Methandienone	C20H28O2	300	15.025	4.41	4.86
4.	Aromadendrene	C ₁₅ H ₂₄	204	15.200	2.35	2.86
5.	Valencene	$C_{15}H_{24}$	204	15.604	7.75	6.01
6.	β -Gurjunene	$C_{15}H_{24}$	204	15.914	3.15	4.75
7.	γ-Eudesmol	C ₁₅ H ₂₆ O ₂	222	16.539	5.74	6.11
8.	Ledol	C ₁₅ H ₂₆ O ₂	222	16.706	23.82	23.53
9.	Viridiflorol	$C_{15}H_{26}O_2$	222	16.872	4.80	6.01
10.	Ledol	C ₁₅ H ₂₆ O ₂	222	17.280	7.46	9.26
11.	Viridiflorol	C ₁₅ H ₂₆ O ₂	222	17.397	4.22	3.43
12.	Sativen	C ₁₅ H ₂₄	204	18.306	20.00	16.56
					100.00	100.00

Table 1: List of compounds in essential oils of N. jatamansi

Antibacterial activity

Table 2: Antibacterial activity of *N. jatamansi*

Sample	MIC values			MBC Values		
Sample	EC	MRSA	KP	EC	MRSA	KP
Neomycin*(µg/ml)	0.156	0.156	0.0195	0.625	5	0.156
Oil(mg/ml)	1.56	0.048	0.048	3.125	3.125	3.125

*Control Antibiotics

EC = Escheriachia coli (ATCC) 25922

MRSA = Methicillin resistance *Staphalococcus aureus* (MRSA)

KP = Klebsiella pneumoniae (MDR)

Conclusion

GC-MS analysis of essentials oil shows the presence of 10 different compounds. Among them Ledol (23.82%), Sativen (20.00%), β -Gurjunene (13.82%) and Valencene (7.75%) are the major constituents. Extract of plant shows antibacterial activity against *Escheriachia coli* (ATCC) 25922, Methicillin resistance *Staphalococcus aureus* (MRSA), *Klebsiella pneumoniae* (MDR).

Acknowledgement

Authors are thankful to Mr. Santosh Basnet, Kathmandu Valley School and College, Chhauni, Kathmandu for providing the research lab, Dr. Bishnu Marasini Department of Biotechnology, National College, Kathmandu for bioactivity test and Mr. Tayer Mohamad Miya, Department of Food Technology and Quality Control, Nepal Government for GC-MS analysis.

References

- 1. Baral SR, Kurmi PP. A compendium of medicinal plants in Nepal. Edn 1, Mass Printing Press, Chhauni, Kathmandu, 2006, 445.
- Paudyal MP, Rajbhandari M, Basnet P, Yahara S, Gewali, MB. Quality assessment of the essential oils from Nardostachys jatamansi D. Don DC and Nardostachys chinensis batal obtained from Kathmandu valley market. Scientific World. 2012; 10(10):13-16.
- 3. Watanabe T, Rajbhandari KR, Malla KJ, Yahara S. A hand book of medicinal plants of Nepal, Nardostachys jatamansi, Edn 1, Amarin Printing and Publishing Public Co., Ltd., 65/16 Chaiyaphruk Road, Taling Chan, Bangkok 10170, Thailand, 2005, 144-145.
- 4. Jadhav VM, Thorat RM, Kadam VJ, Kamble SS. Herbal anxiolyte: Nardostachys jatamansi. J Pharm Res. 2009; 2(8):1208-1211.
- Liu XC, Liu ZL. Evaluation of insecticidal activity of Nardostachys jatamansi essential oil against some grain storage insects. J Entomol Zoo Studies. 2014; 2(4):335-340.
- Madhu LN, Suchetha KN, Ganesh S. Efficiency of Nardostachys jatamansi extract in modifying electron beam radiation induced mortality and clastogenicity in mice. J Pharm Res. 2011; 4(12):4518-4520.
- 7. Bhagat M, Pandita RM, Saxena AK. In vitro and in vivo biological activities of Nardostachys jatamansi roots. Med Aromat Plants. 2013; 2(142):2167-0412.
- 8. Singh RK, Vaishali PS, Murthy PN, Panigrahi G, Sharma PK. Evaluation of anti-inflammatory potential of Nardostachys jatamansi rhizome in experimental rodents. J Coast Life Med. 2014; 2:38-43.